Foxa2 regulates multiple pathways of insulin secretion.

نویسندگان

  • Kristen A Lantz
  • Marko Z Vatamaniuk
  • John E Brestelli
  • Joshua R Friedman
  • Franz M Matschinsky
  • Klaus H Kaestner
چکیده

The regulation of insulin secretion by pancreatic beta cells is perturbed in several diseases, including adult-onset (type 2) diabetes and persistent hyperinsulinemic hypoglycemia of infancy (PHHI). The first mouse model for PHHI has a conditional deletion of the gene encoding the winged-helix transcription factor Foxa2 (Forkhead box a2, formerly Hepatocyte nuclear factor 3beta) in pancreatic beta cells. Using isolated islets, we found that Foxa2 deficiency resulted in excessive insulin release in response to amino acids and complete loss of glucose-stimulated insulin secretion. Most PHHI cases are associated with mutations in SUR1 (Sulfonylurea receptor 1) or KIR6.2 (Inward rectifier K(+) channel member 6.2), which encode the subunits of the ATP-sensitive K(+) channel, and RNA in situ hybridization of mutant mouse islets revealed that expression of both genes is Foxa2 dependent. We utilized expression profiling to identify additional targets of Foxa2. Strikingly, one of these genes, Hadhsc, encodes short-chain L-3-hydroxyacyl-coenzyme A dehydrogenase, deficiency of which has been shown to cause PHHI in humans. Hadhsc is a direct target of Foxa2, as demonstrated by cotransfection as well as in vivo chromatin immunoprecipitation experiments using isolated islets. Thus, we have established Foxa2 as an essential activator of genes that function in multiple pathways governing insulin secretion.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Foxa2 (HNF3beta ) controls multiple genes implicated in metabolism-secretion coupling of glucose-induced insulin release.

The transcription factor Foxa2 is implicated in blood glucose homeostasis. Conditional expression of Foxa2 or its dominant-negative mutant DN-Foxa2 in INS-1 cells reveals that Foxa2 regulates the expression of genes important for glucose sensing in pancreatic beta-cells. Overexpression of Foxa2 results in blunted glucose-stimulated insulin secretion, whereas induction of DN-Foxa2 causes a left ...

متن کامل

Sox17 Regulates Insulin Secretion in the Normal and Pathologic Mouse β Cell

SOX17 is a key transcriptional regulator that can act by regulating other transcription factors including HNF1β and FOXA2, which are known to regulate postnatal β cell function. Given this, we investigated the role of SOX17 in the developing and postnatal pancreas and found a novel role for SOX17 in regulating insulin secretion. Deletion of the Sox17 gene in the pancreas (Sox17-paLOF) had no ob...

متن کامل

Foxa2-dependent hepatic gene regulatory networks depend on physiological state.

Bile acids are powerful detergents produced by the liver to aid in the absorption of dietary lipids. We recently reported a novel role for Foxa2 in bile acid metabolism. The winged helix transcription factor Foxa2 is required to prevent intrahepatic cholestasis and liver injury in mice fed a cholic acid-enriched diet. Here, we use functional genomics to study how Foxa2 regulates its targets in ...

متن کامل

A Single-Nucleotide Polymorphism in a Methylatable Foxa2 Binding Site of the G6PC2 Promoter Is Associated With Insulin Secretion In Vivo and Increased Promoter Activity In Vitro

OBJECTIVE The G6PC2 gene encoding islet-specific glucose-6-phosphatase related protein (IGRP) has a common promoter variant, rs573225 (-231G/A), located within a Foxa binding site. We tested the cis-regulatory effects of rs573225 on promoter activity and its association with insulin response to oral glucose. RESEARCH DESIGN AND METHODS Functional effects of rs573225 were explored in transfect...

متن کامل

1 MicroRNA - 124 a regulates Foxa 2 expression and intracellular signaling in pancreatic β - cell lines

MicroRNAs (miRNAs) are short noncoding RNAs that have been implicated in fine-tuning gene regulations, although the precise roles of many are still unknown. Pancreas development is characterized by the complex sequential expression of a gamut of transcription factors. We have performed miRNA expression profiling at two key stages of m o u s e e m b r y o n i c p a n c r e a s development, e14.5...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • The Journal of clinical investigation

دوره 114 4  شماره 

صفحات  -

تاریخ انتشار 2004